当前位置:首页>正文

Python机器学习(影印版) 东南大学出版社 pdf 下载 mobi 极速 snb 夸克云 txt chm

免费下载书籍地址:PDF下载地址

精美图片

Python机器学习(影印版) 东南大学出版社书籍详细信息

  • ISBN:9787564170776
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2017-04
  • 页数:425
  • 价格:69.60
  • 纸张:胶版纸
  • 装帧:平装-胶订
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分

寄语:

新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!

内容简介:

本书将带你进入预测分析的世界,通过演示告诉你为什么Python是世界很好的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括 scikit-learn、Theano和Keras在内的大量功能强大的Python库,操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。

书籍目录:

Preface

Chapter 1: Givin Computers the Ability to Learn from Data

Building intelligent machines to transform data into knowledge

The three different types of machine learning

Making predictions about the future with supervised learning

Classification for predicting class labels

Regression for predicting continuous outcomes

Solving interactive problems with reinforcement learning

Discovering hidden structures with unsupervised learning

Finding subgroups with clustering

Dimensionality reduction for data compression

An introduction to the basic terminology and notations

A roadmap for building machine learning systems

Preprocessing-getting data into shape

Training and selecting a predictive model

Evaluating models and predicting unseen data instances

Using Python for machine learning

Installing Python packages

Summary

Chapter 2: Training Machine Learning Algorithms

for Classification

Artificial neurons-a brief glimpse into the early history

of machine learning

Implementing a perceptron learning algorithm in Python

Training a perceptron model on the Iris dataset

Adaptive linear neurons and the convergence of learning

Minimizing cost functions with gradient descent

Implementing an Adaptive Linear Neuron in Python

Large scale machine learning and stochastic gradient descent

Summary

Chapter 3: A Tour of Machine Learning Classifiers Using

Scikit-learn

Choosing a classification algorithm

First steps with scikit-learn

Training a perceptron via scikit-learn

Modeling class probabilities via logistic regression

Logistic regression intuition and conditional probabilities

Learning the weights of the logistic cost function

Training a logistic regression model with scikit-learn

Tackling overfitting via regularization

Maximum margin classification with support vector machines

Maximum margin intuition

Dealing with the nonlinearly separablecase using slack variables

Alternative implementations in scikit-learn

Solving nonlinear problems using a kernel SMM

Using the kernel trick to find separating hyperplanes in higher

dimensional space

Decision tree learning

Maximizing information gain-getting the most bang for the buck

Building a decision tree

Combining weak to strong learners via random forests

K-nearest neighbors-a lazy learning algorithm

Summary

Chapter 4: Building Good Training Sets-Data Preprocessing

Dealing with missing data

Eliminating samples or features with missing values

Imputing missing values

Understanding the scikit-learn estimator API

Handling categorical data

Mapping ordinal features

Encoding class labels

Performing one-hot encoding on nominal features

Partitioning a dataset in training and test sets

Bringing features onto the same scale

Selecting meaningful features

Sparse solutions with L1 regularization

Sequential feature selection algorithms

Assessing feature importance with random forests

Summary

Chapter 5: Com~ Data via Di~ Reduction

Unsupervised dimensionality reduction via principal

component analysis

Total and explained variance

Feature transformation

Principal component analysis in scikit-learn

Supervised data compression via linear discriminant analysis

Computing the scatter matrices

Selecting linear discriminants for the new feature subspace

Projecting samples onto the new feature space

LDA via scikit-learn

Using kernel principal component analysis for nonlinear mappings

Kernel functions and the kernel trick

Implementing a kernel principal component analysis in Python

Example 1-separating half-moon shapes

Example 2-separating concentric circles

Projecting new data points

Kernel principal component analysis in scikit-learn

Summary

Chapter 6: Learning Best Practices for Model Evaluation

and Hyperparameter Tuni~

Streamlining workflows with pipelines

Loading the Breast Cancer Wisconsin dataset

Combining transformers and estimators in a pipeline

Using k-fold cross-validation to assess model performance

The holdout method

K-fold cross-validation

Debugging algorithms with learning and validation curves

Diagnosing bias and variance problems with learning curves

Addressing overfitting and underfitting with validation curves

Fine-tuning machine learning models via grid search

Tuning hyperparameters via grid search

Algorithm selection with nested cross-validation

Looking at different performance evaluation metrics

Reading a confusion matrix

Optimizing the precision and recall of a classification model

Plotting a receiver operating characteristic

The scoring metrics for multiclass classification

Summary

Chapter 7: Combining Different Models for Ensemble Learning

Learning with ensembles

Implementing a simple majority vote classifier

Combining different algorithms for classification with majority vote

Evaluating and tuning the ensemble classifier

Bagging-building an ensemble of classifiers from

bootstrap samples

Leveraging weak learners via adaptive boosting

Summary

Chapter 8: Applying Machine Learning to Sentiment Analysis

Obtaining the IMDb movie review dataset

Introducing the bag-of-words model

Transforming words into feature vectors

Assessing word relevancy via term frequency-inverse

document frequency

Cleaning text data

Processing documents into tokens

Training a logistic regression model for document classification

Working with bigger data-online algorithms and

out-of-core learning

Summary

Chapter 9: Embedding a Machine Learning Model into

a Web Application

Serializing fitted scikit-learn estimators

Setting up a SQLite database for data storage

Developing a web application with Flask

Our first Flask web application

Form validation and rendering

Turning the movie classifier into a web application

Deploying the web application to a public sewer

Updating the movie review classifier

Summary

Chapter 10: Predicting Continuous Target Variables

with R_Re_gression Analysis

Introducing a simple linear regression model

Exploring the Housing Dataset

Visualizing the important characteristics of a dataset

Implementing an ordinary least squares linear regression model

Solving regression for regression parameters with gradient descent

Estimating the coefficient of a regression model via scikit-learn

Fitting a robust regression model using RANSAC

Evaluating the performance of linear regression models

Using regularized methods for regression

Turning a linear regression model into a curve-polynomial regression

Modeling nonlinear relationships in the Housing Dataset

Dealing with nonlinear relationships using random forests

Decision tree regression

Random forest regression

Summary

Chapter 11: Working with Unlabeled Data- Cluste~

Grouping objects by similarity using k-means

K-means++

Hard versus soft clustering

Using the elbow method to find the optimal number of clusters

Quantifying the quality of clustering via silhouette plots

Organizing clusters as a hierarchical tree

Performing hierarchical clustering on a distance matrix

Attaching dendrograms to a heat map

Applying agglomerative clustering via scikit-learn

Locating regions of high density via DBSCAN

Summary

Chapter 12: Training Artificial Neural Networks for Image Recognition

Modeling complex functions with artificial neural networks

Single-layer neural network recap

Introducing the multi-layer neural network architecture

Activating a neural network via forward propagation

Classifying handwritten digits

Obtaining the MNIST dataset

Implementing a multi-layer perceptron

Training an artificial neural network

Computing the logistic cost function

Training neural networks via backpropagation

Developing your intuition for backpropagation

Debugging neural networks with gradient checking

Convergence in neural networks

Other neural network architectures

Convolutional Neural Networks

Recurrent Neural Networks

A few last words about neural network implementation

Summary

Chapter 13: Parallelizing Neural Network Training with Theano

Building, compiling, and running expressions with Theano

What is Theano?

First steps with Theano

Configuring Theano

Working with array structures

Wrapping things up-a linear regression example

Choosing activation functions for feedforward neural networks

Logistic function recap

Estimating probabilities in multi-class classification via the

softmax function

Broadening the output spectrum by using a hyperbolic tangent

Training neural networks efficiently using Keras

Summary

Index

作者介绍:

Sebastian Raschka is a PhD student at Michigan State University, who develops new computational methods in the field of computational biology. He has been ranked as the number one most influential data scientist on GitHub by Analytics Vidhya. He has a yearlong experience in Python programming and he has conducted several seminars on the practical applications of data science and machine learning. Talking and writing about data science, machine learning, and Python really motivated Sebastian to write this book in order to help people develop data-driven solutions without necessarily needing to have a machine learning background.

He has also actively contributed to open source projects and methods that he implemented, which are now successfully used in machine learning competitions, such as Kaggle. In his free time, he works on models for sports predictions, and if he is not in front of the computer, he enjoys playing sports.

出版社信息:

暂无出版社相关信息,正在全力查找中!

书籍摘录:

暂无相关书籍摘录,正在全力查找中!

在线阅读/听书/购买/PDF下载地址:

在线阅读地址:Python机器学习(影印版) 东南大学出版社在线阅读

在线听书地址:Python机器学习(影印版) 东南大学出版社在线收听

在线购买地址:Python机器学习(影印版) 东南大学出版社在线购买

原文赏析:

暂无原文赏析,正在全力查找中!

其它内容:

书籍介绍

机器学习和预测分析正在改变商业和其他组织的运作模式。

由塞巴斯蒂安·拉什卡著的《Python机器学习(影印版)(英文版)》将带你进入预测分析的世界,通过演示告诉你为什么Python是世界顶尖的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括scikit-learn、

Theano和Keras在内的大量功能强大的Python库、操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。

书籍真实打分

故事情节:4分

人物塑造:8分

主题深度:6分

文字风格:9分

语言运用:3分

文笔流畅:8分

思想传递:7分

知识深度:9分

知识广度:8分

实用性:4分

章节划分:9分

结构布局:8分

新颖与独特:7分

情感共鸣:9分

引人入胜:5分

现实相关:3分

沉浸感:8分

事实准确性:9分

文化贡献:9分

网站评分

书籍多样性:8分

书籍信息完全性:9分

网站更新速度:4分

使用便利性:3分

书籍清晰度:4分

书籍格式兼容性:6分

是否包含广告:3分

加载速度:7分

安全性:6分

稳定性:8分

搜索功能:3分

下载便捷性:9分

下载点评

  • 速度快(389+)
  • 下载快(131+)
  • 小说多(528+)
  • 四星好评(280+)
  • 书籍完整(105+)
  • 实惠(234+)
  • 推荐购买(492+)
  • 盗版少(596+)
  • 情节曲折(311+)
  • 内容完整(149+)
  • 可以购买(431+)
  • 格式多(271+)

下载评价

网友 訾***雰:下载速度很快,我选择的是epub格式

网友 孙***夏:中评,比上不足比下有余

网友 焦***山:不错。。。。。

网友 国***芳:五星好评

网友 隗***杉:挺好的,还好看!支持!快下载吧!

网友 温***欣:可以可以可以

网友 益***琴:好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

网友 冯***丽:卡的不行啊

网友 瞿***香:非常好就是加载有点儿慢。

网友 马***偲:好 很好 非常好 无比的好 史上最好的

网友 谭***然:如果不要钱就好了

网友 冷***洁:不错,用着很方便

网友 养***秋:我是新来的考古学家

网友 习***蓉:品相完美

版权声明

1本文:Python机器学习(影印版) 东南大学出版社转载请注明出处。
2本站内容除签约编辑原创以外,部分来源网络由互联网用户自发投稿仅供学习参考。
3文章观点仅代表原作者本人不代表本站立场,并不完全代表本站赞同其观点和对其真实性负责。
4文章版权归原作者所有,部分转载文章仅为传播更多信息服务用户,如信息标记有误请联系管理员。
5本站一律禁止以任何方式发布或转载任何违法违规的相关信息,如发现本站上有涉嫌侵权/违规及任何不妥的内容,请第一时间联系我们申诉反馈,经核实立即修正或删除。


本站仅提供信息存储空间服务,部分内容不拥有所有权,不承担相关法律责任。

相关文章:

  • 多才多艺的文学巨匠 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 卡游 数码宝贝卡片荣耀版SP卡HR正版对战卡玩具周边全套卡包卡牌博闻推荐任选 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 2020版学校】许慎《画说汉字》1000个汉字故事书小学版1-2年级新课外学习读物 图解说文解字 中文汉字记忆技巧书 语文写作基础书籍 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 爱克斯探长(数学侦探故事典藏版)/中国科普名家名作 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 善解童真:小学生性健康教育读本(五年级) pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 墨点衡中体衡水体英语字帖高中初中七年级上册衡水中学英语字帖综合速成 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 美味健身菜/美味厨房系列丛书 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 网络的破碎化传播 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 选煤新技术 pdf 下载 mobi 极速 snb 夸克云 txt chm
  • 2023版语文新方法七八九年级中考上册下册人教部编版初中语文专题强化训练课课练语文阅读理解能力提升同步练习复习压轴题冲刺中考 pdf 下载 mobi 极速 snb 夸克云 txt chm